

Battery Applications for NASA's Missions -A Historical Perspective

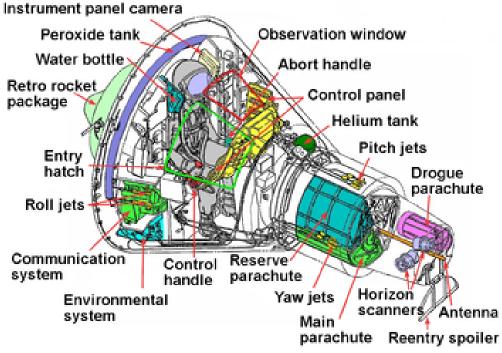
ARPA-E

Robust Affordable Next Generation EV-Storage

January 28-29, 2014 NASA KSC Visitor's Center Debus Conference Center

Thomas B. Miller NASA Glenn Research Center 21000 Brookpark Road Mail Stop 309-1 Cleveland, Ohio Thomas.B.Miller@nasa.gov

Project Mercury


Duration
Crew size
Rockets
Contractor
Cost
Followers

1959–1963 One Atlas D, Redstone and Little Joe McDonnell Aircraft (spacecraft) \$1.71 billion (current prices) Gemini and Apollo

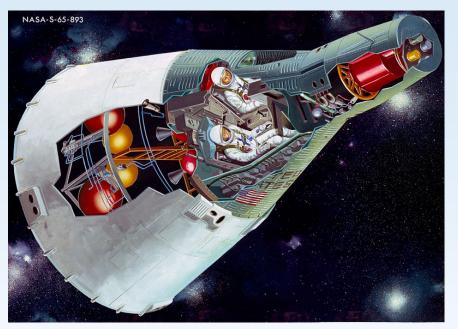
Mercury Capsule

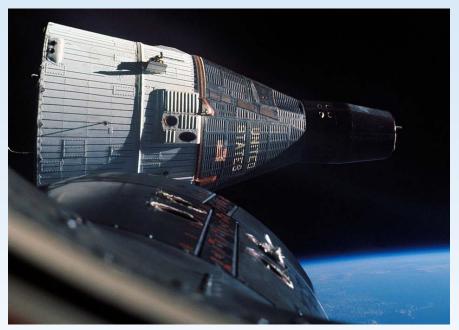
3 3 kWhr main batteries2 3 kWhr standby batteries1 1.5 kWhr squib battery

24 VDC main buss 115 VAC 1 Φ 400Hz

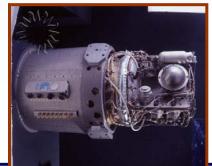
All batteries were Ag/Zn primary

13.5 kWhr total energy required

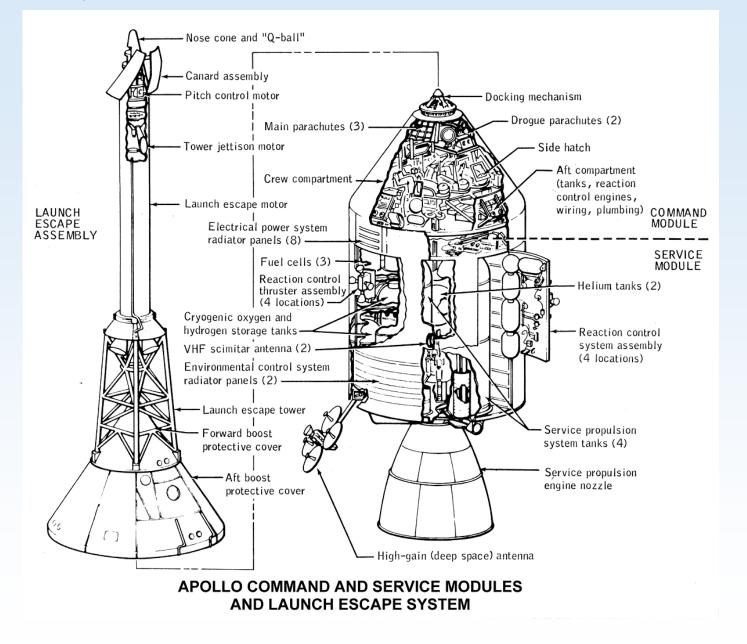

Project Gemini

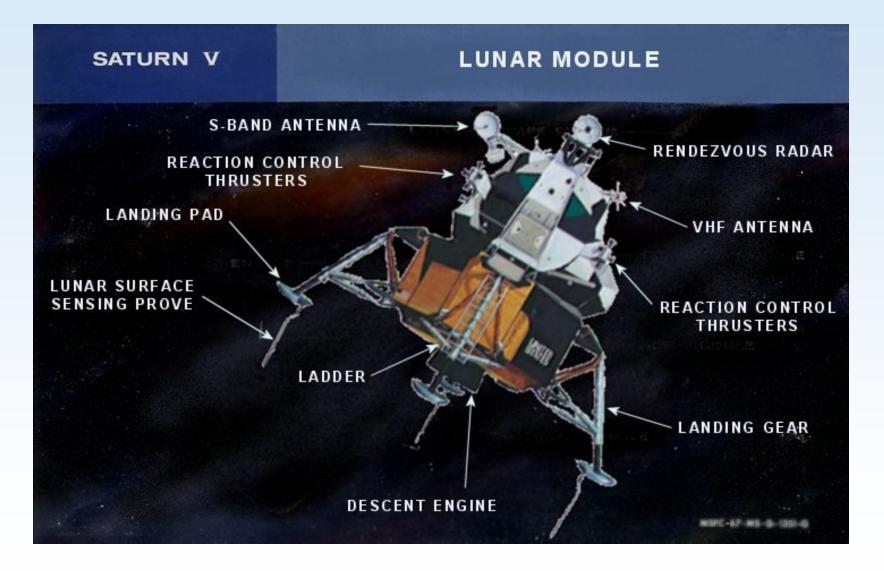


Duration 1962-1966 Long-duration spaceflight; rendezvous and docking; extra-Goals vehicular activity; targeted reentry and Earth landing Eight-day flight necessary for Apollo; 14-day endurance flight; first American spacewalk; Achieved first rendezvous; first docking; demonstrated ability to work in EVA without tiring 2 Crew Launch: Titan II GLV Vehicles Other: Agena, docking target

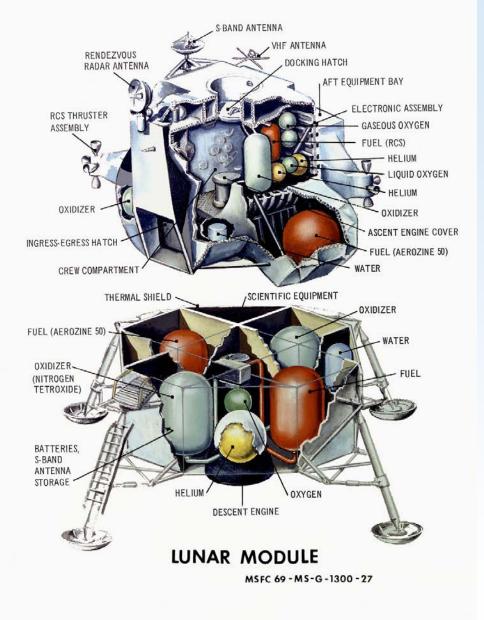

Gemini Capsule

S/C 3,4, and 6 used Ag/Zn 1^o Could not support missions > 4 days 4 main batteries 45 Ah 3 squib batteries 15 Ah Total Battery weight was 647 lbs. 28 VDC buss S/C 5, 7-12 utilized a PEM Fuel Cell 32 cells/stack; 6 stacks total 1 kW peak power 26.5 VDC BOL

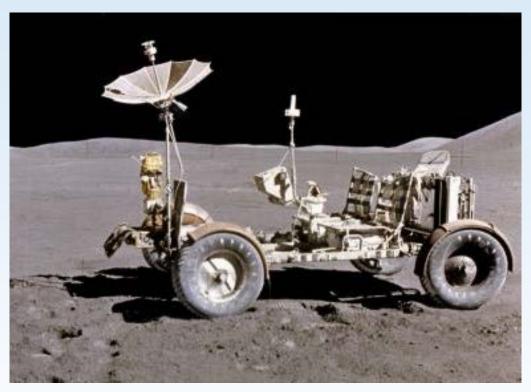



Command 3 entry batteries 40 Ah Ag/Zn 28 VDC buss

Service Module 3 Fuel Cells 575 W each 1 400 Ah Ag/Zn 28 VDC buss 115 VAC 3Φ 400 Hz

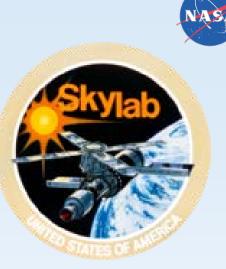


Lunar Excursion Module


Ascent Stage

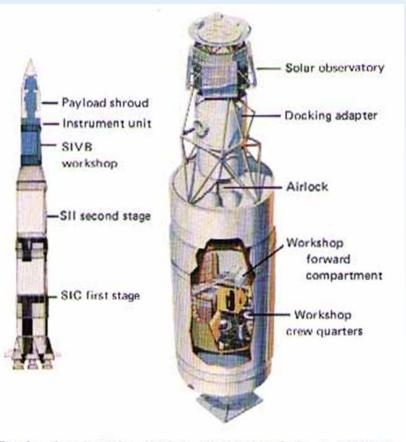
Batteries: Two 296 Ah Ag/Zn; 125 lb (57 kg) each
Buss: 28 VDC, 115 V 400 Hz AC

Descent Stage • Batteries: Four 400 Ah Ag/Zn • Buss: 28 VDC


Lunar Roving Vehicle (LRV)

The lightweight electric car greatly increased the range of mobility and productivity on the scientific traverses for astronauts. It weighed 462 pounds (77 pounds on the Moon) and could carry two suited astronauts, their gear and cameras, and several hundred pounds of bagged samples. Two 36-volt silver-zinc primary batteries with a capacity of 121 Ah each for a total of 242 Ah translating into a range of 57 miles (92 km).

Station statistics



Command Service Module 2 Fuel Cells 3 Entry batteries 40 Ahr Ag/Zn 3 Descent Batteries 500 Ah Ag/Zn 2 Pyro Batteries 40 Ah Ag/Zn Apollo Telescope Mount 18 Ni/Cd batteries 20 Ah 28 VDC buss 5800 W CSM Fuel Cell inactive 4700 W CSM Fuel Cell active

Airlock Module 8 Ni/Cd batteries 30 cells 33 Ah

Ready for launch, Skylab was encased in a massive aerodynamic shroud, mounted as the upper portion of the launch vehicle.

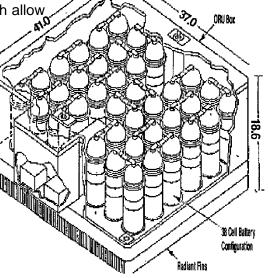
ISS Battery Subassembly ORU

The Battery Subassembly ORU consists of 38 lightweight Nickel Hydrogen cells and associated electrical and mechanical equipment, packaged in an ORU enclosure. The Space Station will use multiples of two series connected Battery Subassembly ORUs which will be capable of storing a total of 8 kWh of electrical energy. These units will be interfaced with a Battery Charge/Discharge Unit (BCDU) which provides charge and discharge control of electric energy. During insolation (daylight), solar electric energy transmitted through the main bus and regulated by the BCDU will replenish the energy stores in preparation for the next eclipse.

The Buyer-Furnished Equipment (BFE) ORU enclosure provides the electrical and thermal interfaces to the Space Station and is designed to allow simple removal and replacement on-orbit. This enclosure is equipped with an integral Radiant Fin Heat Exchanger (RHX) which is used by a number of ORUs and provides a highly reliable, non contact, thermal transfer interface. The ORUs are locked in place by two "ACME" screws which when unscrewed allow the ORUs to be removed by a robotic arm.

The batteries contain monitoring instrumentation (pressure & temperature) which allow assessment of state of change and general health.

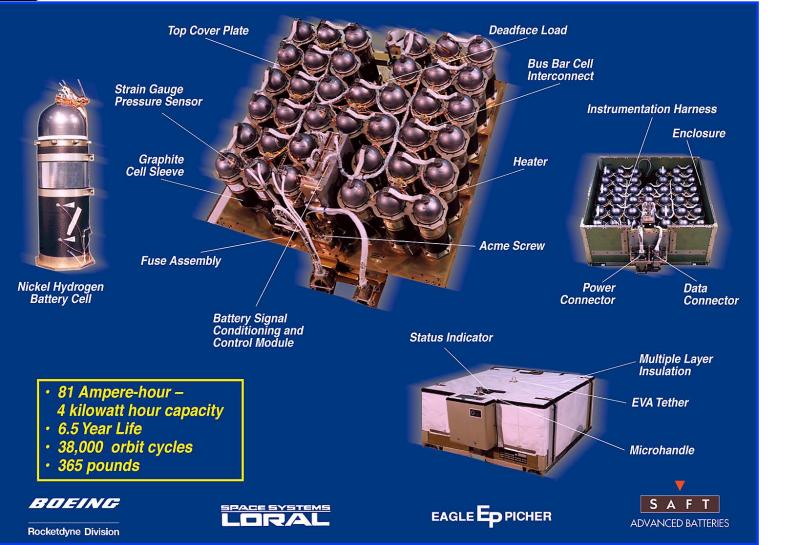
Key Data:

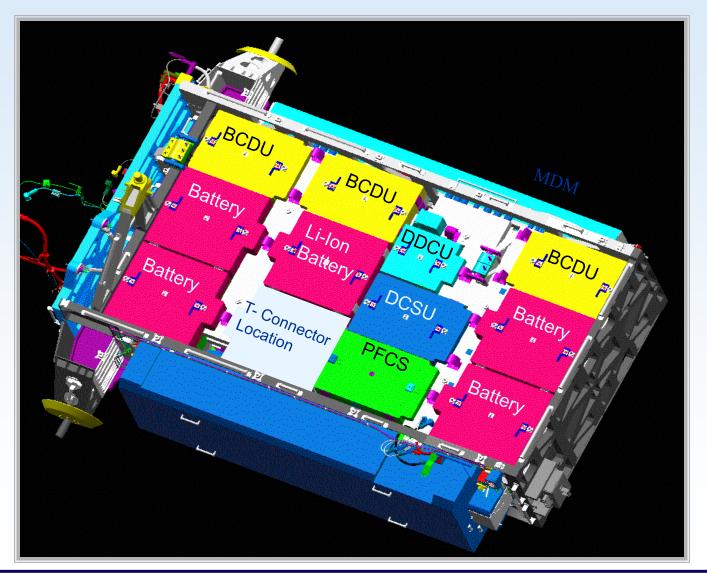

Size: Weight: Number on Space Station: 41 in. x 37 in. x 19 in. 356 lb SAFT, 372 lb EPI 48

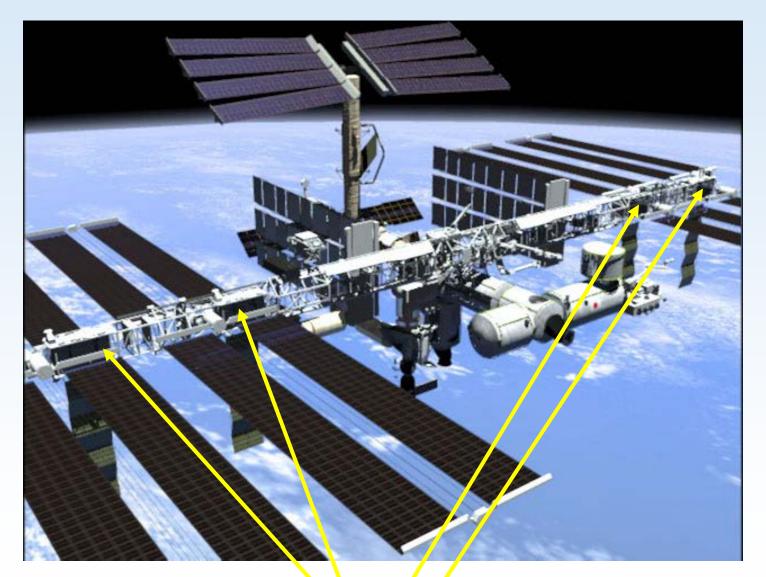
6.5

Performance Data:

Battery ORU Design Life: Battery ORU Charge/Discharge Cycle Life @ 35% Depth of Discharge (DOD): Cell Quantity per ORU/Configuration: Electrolyte Material: Nominal Storage Capacity: Operating Voltage:

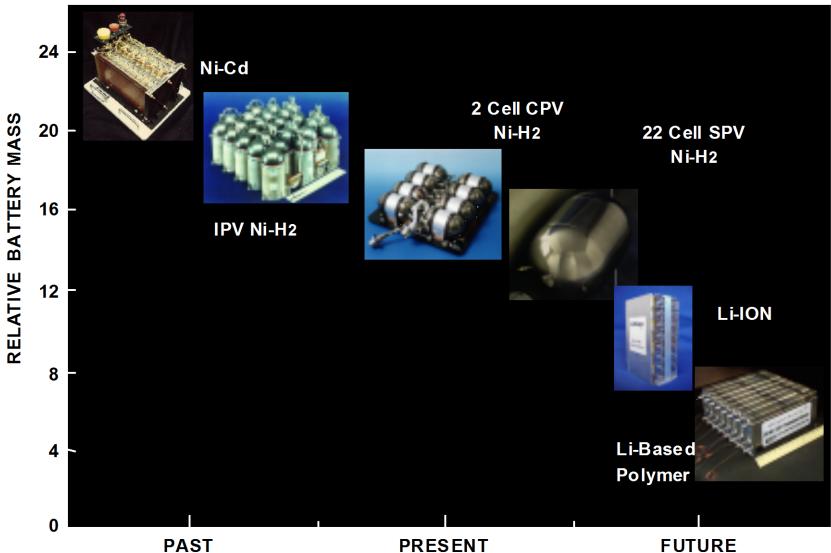

38,000 cycles 38 series connected 31% Aqueous (KOH) 4 kWh 38-61.3 V


Battery Subassembly ORU



Li-Ion Battery Replacement Concept ISS Integrated Equipment Assembly (IEA) Detail

ISS Battery Locations



Battery Locations

Capabilities of SOA Technologies

System	Application	Battery Capability	Limitations
Silver/Zinc AgO/Zn (Rechargeable)	• EMU • CLV • Mars landers	 100 Wh/kg at 25°C 190 Wh/l -10°C to 25°C <50 deep cycles 	 Electrolyte Leakage Inadequate calendar and cycle life Poor low temperature performance
Nickel/Cadmium Ni/Cd (Rechargeable)	 Orbital missions Astronaut tools 	 30 Wh/kg 60 Wh/l at 25°C -10°C to 25°C >30,000 cycles @30%DOD 	 Heavy and bulky Poor low temperature performance
Nickel/Hydrogen Ni/H ₂ (Rechargeable)	 Planetary orbiters, LEO/GEO ISS 	 30 Wh/kg 20 Wh/l at 25°C -10°C to 25° C >50,000 cycles @30%DOD 	 Heavy and bulky Poor low temperature performance
Lithium-Ion (liquid) Li-Ion (Rechargeable)	 Orbital Missions Mars rovers Astronaut tools 	 90 Wh/kg 250 Wh/l at 25°C -20°C to 30°C >500 cycles 	 Possible unsafe behavior? Low power densities Narrow temperature range Moderate life

Batteries for Electric Vehicles

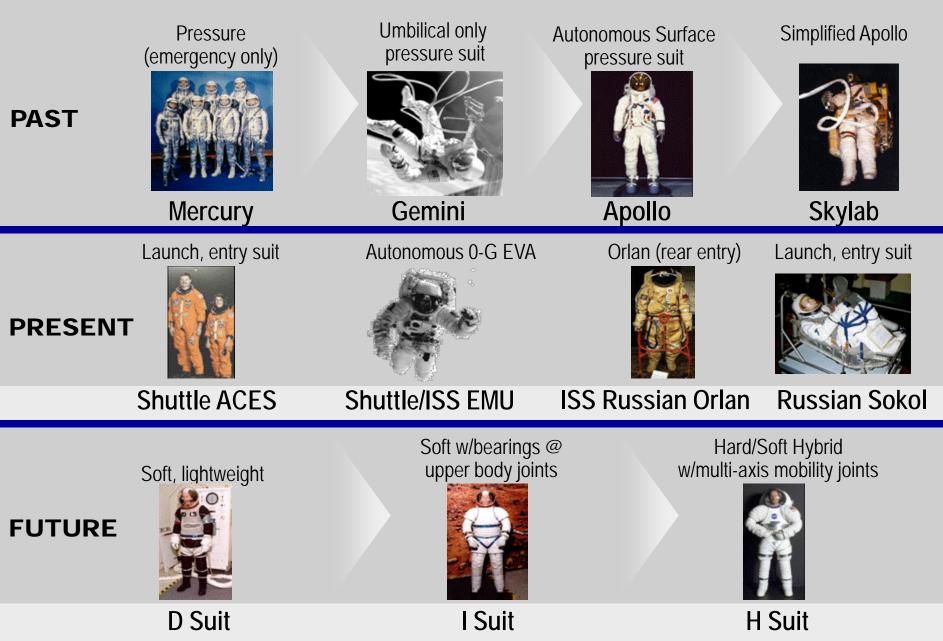
Late 1970's Battery and Cell Development for Electric Vehicles


- Spin off of space battery developments
- Space expertise with nickel-cadmium and silver-zinc chemistries applied to nickel-zinc development

Batteries: Leveraged Activities-Rovers

Athlete and Chariot Dozer Rovers

Rover in SLOPE Facility


A technology demonstration is planned to build experience in developing integrated electric power systems for land-based rovers and robotic devices. Lithium-ion cells shall be assembled into a battery and combined with an integrated electric power system. System performance will be evaluated in a land-based, research test vehicle. Experience gained in this project will benefit the development of system integration and modelling, power distribution and management, rover power system control, mechanical design and safety-system development.

Key activities include:

- Develop, build and test an integrated electric power system for a land-based rover demonstrator.
- Investigate lithium-ion battery/cell degradation rates under lunar mission profiles to estimate cycle life and DOD interactions.
- Utilize commercial battery cell balance hardware from Aeroflex to maintain cell-to-cell uniformity.
- Establish control systems and components to assure safety and performance standards are satisfied.

Historical perspectives

Current EVA Power Systems

Pistol Grip Tool (PGT) Battery Nickel Metal Hydride (NiMH)

> Helmet Light (EHIP) Battery Nickel Metal Hydride (NiMH)

Increased Capacity Battery (ICB) for EMU Silver-Zinc (Ag/Zn)

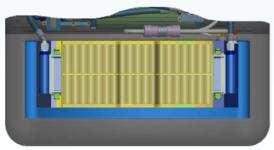
Rechargeable EVA Battery Assembly (REBA) Nickel Metal Hydride (NiMH)

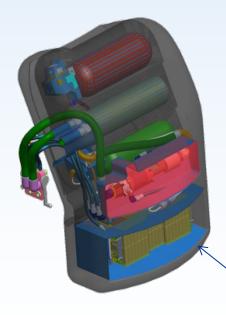
Simplified Aid For EVA Rescue (SAFER) Battery Lithium Manganese Dioxide (Li-MnO₂)

THE STATE

EVA Batteries

- Li-ion Battery for EMU-PLSS
 - ~200 Wh/L, 100 Wh/kg
 - ~1 yr calendar life, ~30 cycles
- Separate NiMH Batteries for
 - Pistol Grip Tool (PGT)
 - Helmet Light Assembly (EHIP)
 - Glove Heater and Helmet Camera (REBA)
 - ~120 Wh/L, ~35 Wh/kg
 - >7 yr calendar life, >500 cycles
 - Passivation issues with dormancy
- Primary Li/MnO₂ Battery for Simplified Aid For EVA Rescue (SAFER)
 - 200 Wh/L, ~70 Wh/kg
 - Providing >4.5 hrs of runtime when only 13 minutes are needed for self-rescue




EVA Surface Suit

- Power to support 8-hour EVA provided by battery in Portable Life Support System
- Preliminary battery design goals:
 - Human-safe operation
 - 144 W (average) and 233 W (peak) power
 Assumes 1% connector loss and 30% margin for growth in power requirements
 - No more than 5 kg mass and 3 liter volume
 - 100 cycles (use every other day for 6 months)
 - 8-hour discharge
 - Operation from 10°C to +30°C
- Secondary batteries are considered <u>critical</u> for EVA Suit 2.

Assembly-Aft

Portable Life Support System (PLSS)

Battery Assembly in PLSS

Architecture Elements and Energy Storage Needs

ESAS Architectural elements		Missions/ Applications	Energy System Sizing	Battery Performance Drivers	
Crew Exploration Vehicle (CEV)		Command Module (CM) Service Module (SM)	 5-10 KWh 4.5 kW Ave 3X 28 V bus 	 Human-rated (Safety) High energy density Long life, high power High temp. resilience 	
		Crew Launch Vehicle (CLV)			
Lunar Surface Ascent Module (LSAM)		Ascent Stage	• 13.5 kWh • 3 x 28 V bus	 Human-rated (Safety) High energy density Long life, high power High temp. resilience 	
		Descent stage	 4.5 kW Ave 1 x 28 V bus 		
Surface Missions	Sorties	EVA	• 0.1 – 1 kW	 Human-rated (Safety) High energy density Long life, high power Low and high temp perf. 	
		Un-pressurized Rovers/landers	• 1 kW	• Low and high temp perf	
	Outpost missions	Un-pressurized Rovers/landers	• 1 kW	 High energy density Long life, high power Safety 	
		Pressurized Rovers/landers	• 1-5 kW	 Human-rated (Safety) High energy density Long life, high power Low and high temp perf. 	
		Fuel cell/battery hybrid power Station	• 10-100 kW	 Human-rated (Safety) High energy density Long life, high power 	

Exploration Technology Development Program Energy Storage Project

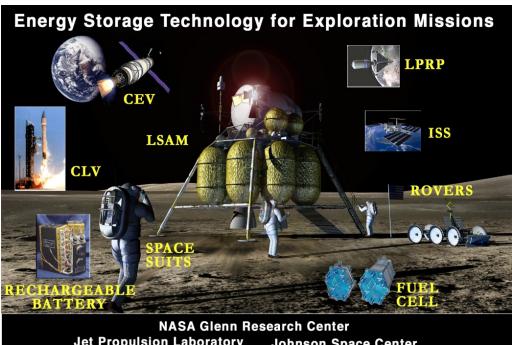
Exploration Technology Development Program

Multiple focused projects to develop enabling technologies addressing high priority needs for lunar exploration. Matures technologies to the level of demonstration in a relevant environment – TRL 6

Energy Storage Project –

Developing electrochemical systems to address Constellation energy storage needs

Altair - Lunar Lander


- Primary fuel cells
- Secondary batteries

EVA

Secondary batteries

Lunar Surface Systems

- Regenerative fuel cell systems for surface systems
- Secondary batteries for mobility systems

NASA Glenn Research Center Jet Propulsion Laboratory Johnson Space Center Marshall Space Flight Center Goddard Space Flight Center Kennedy Space Center

Constellation Energy Storage Requirements

Extravehicular Activities Power for Portable Life Support Systems and Communications/Avionics/Informatics: Human-safe operation 8-hr duration High specific energy >200 Wh/kg High energy density >300 Wh/l


Altair - Lunar Lander

Descent Stage: Functional primary fuel cell with 5.5 kW peak power. Human-safe reliable operation; high energy-density; architecture compatibility Ascent Stage: Rechargeable battery capability Nominally 14 kWhr in 67 kg, 45 liter package Human-safe, reliable operation; high energy-density.

Ares I/V

Thrust Vector Control: Replace hydrazine with batteries Earth Departure Stage: Replace solar cells/batteries with fuel cells

Energy Storage Project Lithium Based Battery Development

- Improve the performance of Lithium-based cells for integration into battery modules to meet the energy storage requirements for Constellation Customers
- Performance parameters
 - Safety human-rated systems
 - Specific energy
 - Energy density
- Two level approach to meet customer requirements
- Safe, reliable Li-ion systems improved specific energy and energy density
- Very high energy systems Li/S or high voltage Li-ion systems
 Under consideration for applications where mass reduction is enabling and
 cycle requirements benign

Thank you. Questions?

Thomas B. Miller NASA Glenn Research Center 21000 Brookpark Road Mail Stop 309-1 Cleveland, Ohio <u>Thomas.B.Miller@nasa.gov</u>